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Structure and transport properties of liquid clusters in a drying porous medium
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The structure and transport properties of drying water clusters in porous media have been studied with a
site-bond invasion percolatidiiP) model. In this model an invadéair) enters a latticéporous networkfilled
with defender(waten via a sequence of invasion steps. The decision to invade @site is made on the basis
of the resistance of the bon@roats. It is found that the backbone of the defender network and its transport
properties are the same as in ordinary percolat@R). In particular the strength exponent of the backbone
Be=0.99+£0.03, the correlation length exponemt0.88, and the conductivity exponept=1.99+0.04 are
the same as in OP. The total network deviates from networks generated with OP: on short length scales the
formation of branches is suppressed because pores with many empty neighbors are preferentially invaded. The
differences between our IP results and the outcomes of OP are a consequence of the invasion mechanism. This
makes clear that the details of the invasion process are important for understanding the transport properties in
a drying network.
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[. INTRODUCTION els have been of great value for understanding the relation
between multiphase-flow phenomena and pore-scale events

Salt weathering is an important cause in deterioration of9—16. It has been proven that the ingress of air during an
buildings, monuments, and natural ro¢&$. Salt weathering evaporation process follows IP-type rulgk7,18. When a
processes are always accompanied by drying phenomeitaree-dimensionaBD) system dries slowly and gravity does
[2,3], and these play an important role because they influenceot play an important role, a standard IP model successfully
the mobility of ions inside the porous medium. The structuredescribes the sequence of invasions down to liquid contents
of the network of liquid-filled pores determines the mobility of about 20—-30 %19].
of the ions and depends on the stage of the drying process. As already mentioned, we want to investigate the diffu-
Therefore, to understand the diffusivity of ions, knowledgesion in the water phase during the drying of a 3D porous
on the evolution of drying water networks is needed. For ousystem. Therefore, we are mainly interested in the structure
particular problem it is a natural choice to use percolationand transport properties of the defender clusters. IP models
models. In drying porous media, or more generally in unsatare used for more than 20 yrs, but most efforts have been put
urated porous systems, air and water form clusters and nea the study of the invader phase and little attention has been
works by a percolation process. paid to the structure of the defender network and clusters. In

Much is known of diffusive motions of particles on per- this study, we want to investigate the defender network: its
colation cluster$4,5]. The important length scale is the char- structure and transport properties. Results will be compared
acteristic size¢ of the network, i.e., the length scale above with the outcomes of OP models.
which the medium can be considered as homogeneous. This paper is organized as follows. In Sec. Il we discuss
When particles travel by Brownian motion over distancesthe relation between the drying of a porous medium and IP,
larger tharé, their paths obey random-walk statistics and thethe connection between IP and OP, the behavior of networks
diffusion process can be described with an effective diffusiornear a percolation threshold, and the site-bond IP model used
coefficient. Motions over distances smaller thganannot be  in this study. In Sec. Il model calculations will be discussed.
described with random walk statistics and the diffusion isFirst, the structural and transport properties of the water net-
called anomalous; due to the fractal properties of the networkvork at the fragmentation point are analyzed in detail. Fur-
at length scales beloy the diffusion slows down. It has to ther, we discuss how these networks behave away from the
be remarked that most diffusion studies have been done witfiagmentation point. In Sec. IV the conclusions will be
clusters generated with ordinary percolati@®, also called drawn.
random percolation Whether or not OP correctly describes
the structure of the water network during a drying process is II. THEORY
still an open issue.

The invasion percolatioflP) model seems to be a more
natural choice for the process of inter¢6t8]. In IP an In the case that capillary forces dominate over viscous
invader fluid (air in the case of dryingenters the porous and buoyancy forces, the drying of the 3D porous medium
medium from one single point or side of the system. IP modpasses through two distinct stages, which can be observed

when the drying rate is measured as a function of {i2@.

In the first period the drying rate is constant and this regime

* Author to whom correspondence should be addressed. Email ads therefore called the constant-rate period. In this regime the
dress: h.p.huinink@tue.nl. water is uniformly distributed throughout the samié,22|

A. Drying of three-dimensional systems
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and the rate-limiting step for the drying process is the vaponumber of isolated clusters of red sites. In IP we also want to
transport in the boundary layer outside the material. Wherolor the sites witlr<<g. Now we start at a specific side of
the water content is at 20—30 % of its initial value, the dryingthe system. At a certain stage of the painting process, we
rate starts to decrease. This regime is called the falling-ratenly color sites red, if they are neighbors of sites painted red
period: a front in the water saturation develops, which movedn previous invasion steps. As a consequence, we generate
inward. In the falling-rate regime the drying rate is limited ©ne single cluster, which is in contact with at least one side

by the vapor transport from the saturation front to the exterof the system. The structure of this cluster is exactly the
nal boundary of the material. same as the structure of the percolating cluster generated

Network simulations have shown that there are two im-With OP and has therefore the same scaling behavior. The

portant transition points in 3D: breakthrough and fragmenta-ggin _diffsrence betyveen ”; "’g?l(.j OF; IS t_he meaBingadfp P
tion [19]. Initially, the medium is completely saturated with . g is the occupation probability of a site or a bond. In |P
liquid. Due to the evaporation, air invades the system. NS the acceptance probability, which is the chance that a site

. . or bond will be invaded given that it is positioned near the
breakthrough(BT) the air cluster just percolates the whole invader/defender interfacge It has beenpfound that for stan-
system. This percolation transition is located in the constant(—jard site IP the percolation.threshmjd is the same as in OP
rate period and is difficult to observe ‘F Macroscopic experiI&g], which reflects the close relation between these models.
ments. After the BT both water and air phase form samplef jie is known of the relation between the defender cluster
spanning clusters. At some moment the water network breaks o 1P and an OP clusters. However. it seems that for
up in isolated clusters: the fragmentation poifiP). This — gimpie site IP the correlation length of the defender net-
point marks the transition from the constant-rate period tq, andg* behave as in OF8,24], indicating that they are
the falling-rate period. Due to the finite size of the clusters aclosely related too. e

front develops in the saturation profile gfter the FP. The similarity between OP and IP is of great value for
_ Due to the fact that a sample-spanning water network exgy,qying the properties of IP networks. For OP systems scal-
ists up to the FP, standard IP models can be used up to thigq re|ations for a number of properties have been obtained

point to prgdict the. sequence O.f invasion eves. To be _.and the values of critical exponents are well documented.
more precise, the ingress of air obeys the rules of IP with

trapping. Isolated water clusters in the bulk of the porous
matrix are embedded in an atmosphere with a water-vapor
density close to the equilibrium value. Therefore, the evapo- It is well known that a number properties of a network
ration rates of isolated clusters are negligible compared tbehave as universal close to a percolation transition. In the
the rate of the spanning clustéhe networl. As a result, case of a defender cluster this percolation transition is the
most invasions take place in the spanning cluster just as it ifagmentation point FP. Especially for the OP model these
prescribed by an IP model with trapping. The major advanproperties have been studied in great detail. Because we want
tage of IP simulations over drying simulatiofia which va-  to investigate a drying cluster and compare its behavior with
por transport and invasions in the isolated clusters are takeihat of OP clusters, it is useful to discuss briefly the behavior
into accounk is that the former are less computationally in- of OP networks close the percolation transition. For a de-
tensive. Therefore, we will use an IP model to study thetailed discussion we refer the reader to the literature
structure and the transport properties of the liquid network27,28,4,9. We restrict the discussion to properties that are

C. Properties near a percolation transition

during drying. of interest within the scope of this paper.
Close to a percolation transition various properties of a
B. Relation with ordinary percolation network behave as universal. Its correlation length

. . . . strengthP, and long-time diffusion coefficient® and D’
An interesting feature of IP is that clusters of the invader g 9

fluid (air in a drying procegsgenerated via this algorithm obey simple scaling laws:

have much in common with clusters formed in an OP process Ex|g—qg*| 7, (1)
[8,23,24. The simplest site- or bond-IP modéts trapping

belong to the same universality class as OP. In some cases M

trapping can cause differences between IP and OP. In 2D P=—ox|q—q*|%, )
trapping lowers the fractal dimensidp; of the percolating LY

cluster[24,25. In 3D trapping is less important because the

percolation points of the invader and defender do not coin- Dox|g—qg*|* 4, (©)
cide. In 3D trapping can change the backbone of the invader
clusters, if the rules of the IP models are such that the for- D’'=PDx|q—qg*|~. 4

mation of closed loops is prevented, see, e.g., R4

That the structures of IP and OP clusters are rather similain these relations), g*, M, andL are the probability that a
can be understood as follows. Consider a very large lattice dite is filled, the value of the percolation threshold, the mass
blue sites that are labeled with random numbeed 0,1] of the network, and the linear system size, respectively. The
chosen from an uniform distribution. In OP we color all sitesexponentsy, 8, and u are the correlation length exponent
with r=q red (q is a value larger than the percolation thresh-(»=0.88 for d=3), the strength exponenp& 0.41 for d
old g*). As a result we end up with one spanning and a=3) and the conductivity exponeni& 2.0 for d=3), re-
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TABLE I. Percolation exponents fad=3. The values for the drying, enters the system at one of th& L sides. At each
OP model are from the referencgs| and[31] (marked with T).  simulation step we identify the throats lying at the invader/
The IP values for the defender cluster have been obtained in thigefender interfacéthroats which connect pore bodies filled
study. The exponent is not determined explicitly in this study, but it invader and defender fluiglsThe throat with the lowest
v=0.88 s consistent with all data. entry pressur@.=2y/r (v is the surface tensigns selected
for invasion and the corresponding pore body is emptied. In

Properties OPd=3) IP (d=3, defender fact, the decision to invade a site is made by evaluating bond
q* 0.311(site), 0.249(bond 0.25-0.26 properties. Such an IP model is known as a site-bond IP
B 0.41 0.46-0.03 model [29]. An additional restriction in the model is that

v 0.88 0.88 isolated clusters cannot be invaded. Isolated water clusters
D¢ 2.53 2.48-0.03 are embedded in a vapor atmosphere with a density close to
Bs 0.99 0.99+0.03 the equilibrium vapor density. Therefore, these clusters
Dg 1.87 1.87+0.03 evaporate very slowly compared to the sample-spanning
o 2.0 1.99-0.04 cluster and most invasions will take place in this clug1éy.

So, in fact an IP model with trapping is used. A Hoshen-
) ) Kopelman type of method is used to identify the separate
spectively. In Table | we have listed the values of these ©Xglusters[30]. A simulation run is stopped when the FP is

ponents and some other percolation properties. reached, i.e., the point where the defender cluster breaks up
The use of two diffusion coefficients originates from the in isolated clusters

fact that two ensembles of diffusing particles can be distin- : e
. i ) : e We calculate the long-time diffusivitl’ of the defender
guished[4]: (&) all particles with a diffusivityD and (b) the network to get information about the transport properties of

particles on the spanning network with a diffusivily . Re- : : L .
lations(3) and(4) hold for timest larger than the time that a this network. Throa_ts connecting pore bod|e_s f||!ed with the
defender are considered to be open for diffusion, and the

article needs to diffuse over a lengthIn the remainder of N o )
b @ local diffusion coefficient equal®,. In order to obtairD’,

this paper we will only work with the latter diffusion coeffi- ) ) : . .
cientD’ . Kirchhoff’'s equations are solved with a conjugated gradient

In finite systems at the percolation transition the correlamethod. The backbone of the defendgr network is identified
obtaining the correct scaling exponents from simulations. Bynassesv of both the defender and invader clusters are cal-

combination ofé=L with expression$l)—(4), the following  culated in the central XL XL part of the system to mini-
expressions can be obtained: mize the influence of the boundaries. Bdii and M are

calculated as averages over various realizations.
MocL9~Alr=1 Pr, (5)

Dol K7V, (6) lll. RESULTS
In Eq. (5) Dy is the fractal dimension an®;<d (D; A. The structure at the fragmentation point
o o o o Sons e been perome for sysem sis
simulations. =5-70. The throat radii have been dlstrlbutegaccordlng to
Finally we want to remark that similar scaling relations @ uniform distribution with an average value=a and a
exist for the backbone of the percolating cluster. In this papeWidth A=0.0%. For most values ot we have simulated
Ps, Bs, Mg, and Dg will be used for the strength, the 1000 realizations. Fot =30, 40, 50, and 70, we have aver-
strength exponent, the mass, and the fractal dimension of treged over 792, 489, 10, and 6 realizations, respectively. In
backbone, respectively. Fig. 1 we have visualized a defender network at the FP: all
defender sites, the spanning network and its backbone. The
percolation properties and exponents obtained via these
The pore space is represented as a cubic network of disjmulations are listed in Table |I.
mensiond. X L X 2L with a grid spacinga. Periodic bound- The masses of the aiinvade) cluster at BT, the liquid
aries are applied in the directions perpendicular to thgdefender cluster at the FP, and the backbone of this latter
LX2L sides of the network. The nodes and bonds of thesjuster have been calculated for different system sizes. Re-
network represent the pore bodies and pore throats, respesuits are plotted in Fig. 2. The structure of the invader cluster
tively. Itis assumed that the volume is in the pore bodies an@t BT behaves as expected and its fractal dimengen
the resistance in the throats. To keep the problem as simple 2 52+0.03 is close to values reported in the literature for
as possible, we assume that all pore bodies have equal sizgusters at the percolation transition for both IP and OP mod-
The radiir of the throats are assigned randomly from a uni-e|s. The behavior of the defender cluster at the FP is more
form distribution with a widthA and a meam. interesting. On larger length scales 10 the cluster behaves
Initially, the pore space is saturated with a wetting de-as a cluster generated with OP. The fractal dimen&gn
fender fluid, i.e., water. The invader fluid, air in the case of=2.48+0.03 is somewhat lower than reported for OP,

D. Simulation model
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FIG. 3. The liquid saturatio® (fraction of sites occupied by the
defender fluigl at the fragmentation point FP. In an infinite system

Backbone defender network L=« the defender network breaks up in isolated clustersS at
=S*.

backboneM g (Fig. 2), indicating that growth of branches is
suppressed on small length scales. This can be understood as
follows. In a site-bond IP algorithm the widest thrghond
is selected to invade a pore bogjte). Therefore, the chance
that a certain site will be invaded by air increases with in-
creasing number of neighboring sites containing(tie in-
FIG. 1. The defender fluid at the fragmentation point inlan  vader fluig. As a consequence, sites of the defender cluster
=70 system: all sites filled with defender fluftbp), the spanning  with many empty neighbors are preferentially invadeochp-
network (middle), and its backbonébottom. tied) and small-scale roughness is suppressed.
The structure of the backbone is not influenced by this
2.53, which may be due to the fact that the dataset used faubtlety of the site-bond IP algorithm and its mass nicely
fitting was limited to systems with X0L<40. In systems scales with the system size down to very small valuek. of
with sizesL <10 the mass of the defender cluster no longerThe fractal dimensionDg=d— Bg/v=1.87+0.03 of the
follows this scaling behavior, which indicates that on smallbackbone is equal to the value obtained with @B7) [31].
length scales the cluster structure deviates from the one gefihis suggest$a) that the correlation length of the defender
erated with an OP or a standard IP algorithms. With decreasietwork behaves as in OP with=0.88 and(b) that finite-
ing L the mas3M of the cluster tends towards the mass of thesize scaling leads to an apparéntiependence of the values
of g andD;. On large length scale8 equals the normal IP
value (8~0.41), while forL<10 B tends towards the back-
bone valugBg=0.99+0.03 (v=0.88). We have tried to ex-
tract a relation betweeg and the liquid saturatior® (the
total number pore bodies filled with defender dividedLby
by plotting Sas a function ol. "', see Fig. 3. Note tha§
=L at the FP. Again two different regimes can be seen. We
did not succeed in fitting the data with one single equation
for all values ofL due to the abrupt change in the slope
invader cluster at FP aroundL=10. The data fol.<10 can be fitted reasonably
Dg2.48 well with a relationS=L ~*"”. Due to a lack of data points for
backbone invader at FP largelL, it i_s hard to come up with an accurate reIatior_l for
D=1.87 systems withL>10. This part of the curve has been fitted
g with a parabolic equation, in order to estimate the percola-
tion threshold. By fitting the data we obtain the following

10000

defender cluster at BT
D=2.52

1000 o

100 o

4 5 6 7 8 910 20 30 40 50

. expression for the correlation lengéh
_ Qv
FIG. 2. The masses of: the invadgir) cluster at breakthrough £= A|S S | ' §<10 @)
BT (A), the defendefliquid) cluster at the fragmentation point FP | JC2+ F(S—-S*)—C| ¥ &>10,
(O), and the backbone of this defender cluster) ( The solid lines
represent the fits through the data points. where ST=0.179, A=1.57, S*=0.255, C=0.047, andF
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FIG. 5. The behavior of diffusing particles on the spanning de-
FIG. 4. The diffusion coefficienb’ on the spanning cluster at fender cluster at the fragmentation point for different system sizes,
the fragmentation point FP for different system sites L=10(O), 20 (A), and 70 (J). The lines represent systems with
random-walk dimensions of an OP clustdy,=3.88[28], and its
=0.271. The quantityS* is the real percolation threshold Packboned,,z=3.09[31].
and its value is close to that of bond OP, see Table I. It has to
be remarked that for a more precise determination of B6th ture of this network is different on small and large length
and of the dependence éfon Sfor £>10, simulations with  scales. Second, we expect that particles will move faster
larger systems are needed. The actual valug*ofvill be in  through a network generated with the site-bond IP model
between 0.25 and 0.26. We also expect that such larger cathan through an OP network. Due to the fact that small
culations will show that a relatioB<L ~'" holds for largeL.  branches are suppressed, there will be fewer dead-end traps
[24]. That a parabolic equation is needed for an accurate fiior the diffusing particles. This will be reflected in the
could be a crossover effect; this would also explain theandom-walk dimensioul,, .
somewhat low value obtained for the fractal dimension of the For a few systemslL(= 10, 20, and 7Pwe have generated
defender networld;=2.48 see Table |. The existence of the random walks and calculated the average squared displace-
two regimes is in agreement with the idea that the structurenent(R?) of diffusing particles on the percolating defender
of the defender cluster is different on small and large lengtttluster, see Fig. 5. For(R?)<L all systems behave the
scales. The fact th&@xL ~ " for L<10 seems to confirm the same and anomalous diffusion is fourd},>2. Figure 5
idea that the correlation length of the defender network beindicates thatl,, increases with{ R2>, which is in agreement

haves as in OP, with the expected value 0.88. with the fact that on small length scales the formation of
branches is suppressed and the structure of a cluster is more
B. Transport properties at the fragmentation point backbonelike. For OP clusters it is known that the random-

walk dimension of a clusterd(,=3.88[28]) is larger than

that of its backboned,z=3.09 [31]). In Fig. 5 the solid
lines represent the diffusion behavior on an OP cluster and
on the backbone of such a cluster. This confirms the idea that
particles diffuse faster on defender clusters generated with
site-bond IP rules than on OP clusters because there are
Fewer traps for the diffusing particles due to the absence of
branches on small length scales.

As a next step we have calculated the diffusividy of
ions in the defender phase at the fragmentation point FP. |
Fig. 4 we have plotte®’ as a function of the system size
The diffusion coefficient shows nice scaling behavior for all
values ofL. This is in agreement with the behavior of the
backbone, of which the mass could also be fitted with
single power law, see Fig. 2. By fitting the data with Eg).
we obtainu/v=2.26+0.04 andu=1.99+0.04 (»=0.88),
which is close to the values obtained with ORble |). This
confirms our ideas regarding the structure of the backbone of
the defender cluster: although the defender cluster itself de- In the previous sections we have investigated the struc-
viates from OP behavior, this deviation is due to thetural and transport properties of the defender network at the
branches. The backbone behaves as in OP and so does #ie. According to the theory discussed in Sec. Il C, the struc-
diffusion coefficientD’ because it is a property of the back- ture and the transport properties of networks at or away from
bone of the cluster. the FP obey simple scaling laws on length scales below the

While D' behaves as in OP, diffusion processes on ORorrelation lengthé. In this section we discuss simulation
clusters and on site-bond IP clusters nevertheless differ faresults for the network properties of the defender cluster as a
two reasons. First, the diffusion coefficient calculated as arfiunction of the degree of saturati@in order to see whether
average over all particle®, equalsD’/P [see Eq(4)] and  or not this is true for the site-bond IP model. In Fig. 6 we
therefore depends on the structure of the whole defender netave plotted the structural properties of the defender phase
work. In the previous section we have shown that the strucfthe masses of the network and its backbomed the diffu-

C. Away from the fragmentation point
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FIG. 6. (a) The masses of the defender network and of its back- a b
bone andb) diffusion coefficient on the former network as a func- b T AR
tion of the fraction of pores filled by defender flugl (L™ W™
sion coefficienD’ in a system of siz& =70 as a function of FIG. 7. Finite-size scaling of the backbone mass of the defender

the defender saturatio® The behavior of the network is as cluster; MgLPe is equal to the scaling functiofi(x), where x
expected. Close to the FP the strength of the network and of (L/£€)*". The symbols refer to various system sizes: 10 (0,
its backbone rapidly drop to zero whe3| S*. Therefore 20 (O), 30 (A), 50 (¢), 70 (X). Two expressions fo has been
D’'—0 when the system approaches the FP. Closs=td used, Eq(7): (a) the one foré<10 and(b) the one foré>10. The
D’ rapidly decreases from 1 to 0.8 with decreasinghis is ~ Solid lines represent a functidrx) = Cx’e.
due to the fact that the invadéair) enters the system from
one side. In the beginning of the invasion process most in=Cx’8. It seems that the data points are now located slightly
vasions occur close to the entrance, which creates a relativelelow the functionf(x). Deviations are observed for low
“dry” surface layer with a high resistance against diffusion. values ofL/¢, whereSis close toS*. When'S approaches
Results obtained for one single system, as shown in FigS*, the correlation length diverges until it saturates at its
6, are instructive, but of little value for a more quantitative maximal value=L. That in both cases the data points obey
analysis because finite-size effects make it difficult to ob-a relationship of the fornx?s, confirms that we have found
serve power-law relations like Eq&) and (4). Therefore, the correct values foDg and Bg .
percolation exponents are generally determined at the perco- By usingY=D', A=, and relation9) it can be shown
lation threshold by finite-size scaling as we did in the previ-that the scaling function for diffusivity is equal @'L*'”. In
ous sections. Testing whether or not the outcomes also holdig. 8 we have plottedD’L*” as a function of x
away from the FP$>S*) can again be done with the help =(L/&)'". In the case that<% ¢<10, Fig. 8a, the data points
of finite-size scaling. Consider a propeltyhich behaves in  follow a master curve, which is represented by a solid line
an infinite system as and obeys the relatiog(x) = Kx*. For the various systems
—NM deviations are observed both for high and low valuek/df
Yoeg o, (®) Again the deviations for high values a&f/ ¢ result from a
saturation of the correlation length at its minimal valge,

where \ is a scaling exponent. In a system of sizehe o
g exp Y =1. The deviations at low./¢ values seem to be related

following relation holds forY [32]:

Y=L "M f((LI&)Y), 9

10000 E 10000

where f(x) is a scaling function withx=(L/&)":f(x)

=consix x" for x>1 andf(x)=1 for x<1. In our particu-

lar case the use of E@9) is complicated by the fact that 1000

cannot be described with one single power law for all values,

of S see Fig. 3 and Eq7). 2w
First, we want to analyze the strength of the backbone

Pg=Mg/L% By usingY=Pg, A\=8g, and relation(9) it

can be shown that the scaling function is equaltgL ~Pe.

In Fig. 7 we plottedVigL ~ P& as a function ofx=(L/&)*".

In the case that % ¢<10, Fig. 1a), most of the data points 1 -

collapse on a master curve, the solid line, which is given by o 100

the relationf (x) = Cx?s. Deviations of this master curve are (L

observed for all system sizes whef¢ approaches. When FIG. 8. Finite-size scaling of the diffusion constant of the de-

the saturation increases, the correlation length decreases. TR@der clusterD’L*'" is equal to the scaling functiog(x), where

correlation length saturates at its minimal valée,1, which  x=(L/£¥. The symbols refer to various system sizés=10

is the distance between two neighboring sites. When (), 20 (O), 30 (A), 50 (¢), and 70 (<). Two expressions for

>10, Fig. 1b), the data points again collapse on a single¢ has been used, E¢7): (a) the one foré<10 and(b) the one for

curve, close to the previously obtained master cufr{») £>10. The solid lines represent a functig(x) = Kx*.

E 1000
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with the behavior ag>10. In Fig. 8b) we have plotted the =*0.03, the correlation length exponent=0.88, and the
data foré>10 together with the previously obtained relation conductivity exponent.=1.99+ 0.04 are almost the same as
g(x) =Kx* (the solid ling. Also here most of the data points in OP. However, the behavior of the total network deviates
collapse on a single curve. The observed deviations at lorom that of networks generated with OP. On short length
values ofL/& are due to the fact that the correlation length scales(when the correlation lengté<10) the formation of
saturates at its maximal valué=L . An interesting feature branches is suppressed in the site-bond IP model, due to the
of Fig. 8b) is that the master curve follows a scaling-la; fact that pores with many empty neighbors are preferentially
but is shifted significantly below the functiogp(x)=Kx*.  invaded. On larger length scales branches are not suppressed
Until now we do not have a clear explanation for this featureand the network behaves in OP=0.41. The differences
It might be that our expression f@r Eqg.(7), is not accurate between our IP results and the outcomes of OP are a conse-
enough. However, the fact that in both cases the data pointguence of the invasion mechanism used in the IP model: sites
obey a relationship of the form*, seems to confirm that we (pores are invaded by evaluation of valuésdii) assigned
have indeed found the correct value for the conduction exto the bondgthroats.
ponentu. We have found that the mobility of ions on a network
generated with the site-bond IP model is higher than that
IV. CONCLUSIONS from an OP model. Due to the fact that the defender network
lacks small branches, there are fewer traps for diffusing par-
We have studied the structure and the transport propertiegcles. This makes clear that the details of the invasion pro-

of a drying water network by using a site-bond invasioncess are important for understanding the transport properties
percolation IP model, in which the invader and defender repin a drying network.

resent air and water, respectively. The outcomes of the simu-
lations have been compared with well-known results of OP.

The site-bond IP simulations predict that the backbone of
a defender network and its transport properties are the same This project was financially supported by the Dutch Tech-
as in OP. The strength exponent of the backb@ge-0.99  nology FoundatioSTW).
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