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Structure and transport properties of liquid clusters in a drying porous medium

H. P. Huinink,* L. Pel, and M. A. J. Michels
Department of Applied Physics, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

~Received 28 May 2003; published 20 November 2003!

The structure and transport properties of drying water clusters in porous media have been studied with a
site-bond invasion percolation~IP! model. In this model an invader~air! enters a lattice~porous network! filled
with defender~water! via a sequence of invasion steps. The decision to invade a site~pore! is made on the basis
of the resistance of the bonds~throats!. It is found that the backbone of the defender network and its transport
properties are the same as in ordinary percolation~OP!. In particular the strength exponent of the backbone
bB50.9960.03, the correlation length exponentn50.88, and the conductivity exponentm51.9960.04 are
the same as in OP. The total network deviates from networks generated with OP: on short length scales the
formation of branches is suppressed because pores with many empty neighbors are preferentially invaded. The
differences between our IP results and the outcomes of OP are a consequence of the invasion mechanism. This
makes clear that the details of the invasion process are important for understanding the transport properties in
a drying network.

DOI: 10.1103/PhysRevE.68.056114 PACS number~s!: 64.60.Ak, 47.53.1n, 47.55.Mh
o

e
n
r

ty
e
ge
ou
io
a
n

r-
r-
ve
ou
e
h
io

i
o

w

s
s

e

od

tion
ents
an

s
ully
ents

fu-
us

ture
dels
put

een
. In
its
red

ss
IP,
rks
sed
d.
et-

ur-
the
e

us
um
rved

me
thel a
I. INTRODUCTION

Salt weathering is an important cause in deterioration
buildings, monuments, and natural rocks@1#. Salt weathering
processes are always accompanied by drying phenom
@2,3#, and these play an important role because they influe
the mobility of ions inside the porous medium. The structu
of the network of liquid-filled pores determines the mobili
of the ions and depends on the stage of the drying proc
Therefore, to understand the diffusivity of ions, knowled
on the evolution of drying water networks is needed. For
particular problem it is a natural choice to use percolat
models. In drying porous media, or more generally in uns
urated porous systems, air and water form clusters and
works by a percolation process.

Much is known of diffusive motions of particles on pe
colation clusters@4,5#. The important length scale is the cha
acteristic sizej of the network, i.e., the length scale abo
which the medium can be considered as homogene
When particles travel by Brownian motion over distanc
larger thanj, their paths obey random-walk statistics and t
diffusion process can be described with an effective diffus
coefficient. Motions over distances smaller thanj cannot be
described with random walk statistics and the diffusion
called anomalous; due to the fractal properties of the netw
at length scales belowj the diffusion slows down. It has to
be remarked that most diffusion studies have been done
clusters generated with ordinary percolation~OP, also called
random percolation!. Whether or not OP correctly describe
the structure of the water network during a drying proces
still an open issue.

The invasion percolation~IP! model seems to be a mor
natural choice for the process of interest@6–8#. In IP an
invader fluid ~air in the case of drying! enters the porous
medium from one single point or side of the system. IP m
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els have been of great value for understanding the rela
between multiphase-flow phenomena and pore-scale ev
@9–16#. It has been proven that the ingress of air during
evaporation process follows IP-type rules@17,18#. When a
three-dimensional~3D! system dries slowly and gravity doe
not play an important role, a standard IP model successf
describes the sequence of invasions down to liquid cont
of about 20–30 %@19#.

As already mentioned, we want to investigate the dif
sion in the water phase during the drying of a 3D poro
system. Therefore, we are mainly interested in the struc
and transport properties of the defender clusters. IP mo
are used for more than 20 yrs, but most efforts have been
in the study of the invader phase and little attention has b
paid to the structure of the defender network and clusters
this study, we want to investigate the defender network:
structure and transport properties. Results will be compa
with the outcomes of OP models.

This paper is organized as follows. In Sec. II we discu
the relation between the drying of a porous medium and
the connection between IP and OP, the behavior of netwo
near a percolation threshold, and the site-bond IP model u
in this study. In Sec. III model calculations will be discusse
First, the structural and transport properties of the water n
work at the fragmentation point are analyzed in detail. F
ther, we discuss how these networks behave away from
fragmentation point. In Sec. IV the conclusions will b
drawn.

II. THEORY

A. Drying of three-dimensional systems

In the case that capillary forces dominate over visco
and buoyancy forces, the drying of the 3D porous medi
passes through two distinct stages, which can be obse
when the drying rate is measured as a function of time@20#.
In the first period the drying rate is constant and this regi
is therefore called the constant-rate period. In this regime
water is uniformly distributed throughout the sample@21,22#
d-
©2003 The American Physical Society14-1
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and the rate-limiting step for the drying process is the va
transport in the boundary layer outside the material. Wh
the water content is at 20–30 % of its initial value, the dryi
rate starts to decrease. This regime is called the falling-
period: a front in the water saturation develops, which mo
inward. In the falling-rate regime the drying rate is limite
by the vapor transport from the saturation front to the ex
nal boundary of the material.

Network simulations have shown that there are two i
portant transition points in 3D: breakthrough and fragmen
tion @19#. Initially, the medium is completely saturated wi
liquid. Due to the evaporation, air invades the system.
breakthrough~BT! the air cluster just percolates the who
system. This percolation transition is located in the consta
rate period and is difficult to observe in macroscopic exp
ments. After the BT both water and air phase form samp
spanning clusters. At some moment the water network bre
up in isolated clusters: the fragmentation point~FP!. This
point marks the transition from the constant-rate period
the falling-rate period. Due to the finite size of the cluster
front develops in the saturation profile after the FP.

Due to the fact that a sample-spanning water network
ists up to the FP, standard IP models can be used up to
point to predict the sequence of invasion events@19#. To be
more precise, the ingress of air obeys the rules of IP w
trapping. Isolated water clusters in the bulk of the poro
matrix are embedded in an atmosphere with a water-va
density close to the equilibrium value. Therefore, the eva
ration rates of isolated clusters are negligible compared
the rate of the spanning cluster~the network!. As a result,
most invasions take place in the spanning cluster just as
prescribed by an IP model with trapping. The major adv
tage of IP simulations over drying simulations~in which va-
por transport and invasions in the isolated clusters are ta
into account! is that the former are less computationally i
tensive. Therefore, we will use an IP model to study
structure and the transport properties of the liquid netw
during drying.

B. Relation with ordinary percolation

An interesting feature of IP is that clusters of the invad
fluid ~air in a drying process! generated via this algorithm
have much in common with clusters formed in an OP proc
@8,23,24#. The simplest site- or bond-IP models~no trapping!
belong to the same universality class as OP. In some c
trapping can cause differences between IP and OP. In
trapping lowers the fractal dimensionD f of the percolating
cluster@24,25#. In 3D trapping is less important because t
percolation points of the invader and defender do not co
cide. In 3D trapping can change the backbone of the inva
clusters, if the rules of the IP models are such that the
mation of closed loops is prevented, see, e.g., Ref.@26#.

That the structures of IP and OP clusters are rather sim
can be understood as follows. Consider a very large lattic
blue sites that are labeled with random numbersr P@0,1#
chosen from an uniform distribution. In OP we color all sit
with r<q red (q is a value larger than the percolation thres
old q* ). As a result we end up with one spanning and
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number of isolated clusters of red sites. In IP we also wan
color the sites withr<q. Now we start at a specific side o
the system. At a certain stage of the painting process,
only color sites red, if they are neighbors of sites painted
in previous invasion steps. As a consequence, we gene
one single cluster, which is in contact with at least one s
of the system. The structure of this cluster is exactly
same as the structure of the percolating cluster gener
with OP and has therefore the same scaling behavior.
main difference between IP and OP is the meaning ofq. In
OPq is the occupation probability of a site or a bond. In
q is the acceptance probability, which is the chance that a
or bond will be invaded given that it is positioned near t
invader/defender interface. It has been found that for st
dard site IP the percolation thresholdq* is the same as in OP
@8,9#, which reflects the close relation between these mod
Little is known of the relation between the defender clus
in an IP and an OP clusters. However, it seems that
simple site IP the correlation lengthj of the defender net-
work andq* behave as in OP@8,24#, indicating that they are
closely related too.

The similarity between OP and IP is of great value f
studying the properties of IP networks. For OP systems s
ing relations for a number of properties have been obtai
and the values of critical exponents are well documented

C. Properties near a percolation transition

It is well known that a number properties of a netwo
behave as universal close to a percolation transition. In
case of a defender cluster this percolation transition is
fragmentation point FP. Especially for the OP model the
properties have been studied in great detail. Because we
to investigate a drying cluster and compare its behavior w
that of OP clusters, it is useful to discuss briefly the behav
of OP networks close the percolation transition. For a
tailed discussion we refer the reader to the literat
@27,28,4,5#. We restrict the discussion to properties that a
of interest within the scope of this paper.

Close to a percolation transition various properties o
network behave as universal. Its correlation lengthj,
strengthP, and long-time diffusion coefficientsD and D8
obey simple scaling laws:

j}uq2q* u2n, ~1!

P5
M

Ld
}uq2q* ub, ~2!

D}uq2q* um2b, ~3!

D85PD}uq2q* um. ~4!

In these relationsq, q* , M, andL are the probability that a
site is filled, the value of the percolation threshold, the m
of the network, and the linear system size, respectively. T
exponentsn, b, andm are the correlation length expone
(n50.88 for d53), the strength exponent (b50.41 for d
53) and the conductivity exponent (m52.0 for d53), re-
4-2
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STRUCTURE AND TRANSPORT PROPERTIES OF . . . PHYSICAL REVIEW E 68, 056114 ~2003!
spectively. In Table I we have listed the values of these
ponents and some other percolation properties.

The use of two diffusion coefficients originates from t
fact that two ensembles of diffusing particles can be dis
guished@4#: ~a! all particles with a diffusivityD and ~b! the
particles on the spanning network with a diffusivityD8. Re-
lations~3! and~4! hold for timest larger than the time that a
particle needs to diffuse over a lengthj. In the remainder of
this paper we will only work with the latter diffusion coeffi
cient D8.

In finite systems at the percolation transition the corre
tion length equals the system size,j5L. This is useful for
obtaining the correct scaling exponents from simulations.
combination ofj5L with expressions~1!–~4!, the following
expressions can be obtained:

M}Ld2b/n5LD f , ~5!

D8}L2m/n. ~6!

In Eq. ~5! D f is the fractal dimension andD f,d (D f
52.53 ford53). By varyingL values for the various fracta
dimensions and percolation exponents can be obtained
simulations.

Finally we want to remark that similar scaling relatio
exist for the backbone of the percolating cluster. In this pa
PB , bB , MB , and DB will be used for the strength, th
strength exponent, the mass, and the fractal dimension o
backbone, respectively.

D. Simulation model

The pore space is represented as a cubic network o
mensionsL3L32L with a grid spacinga. Periodic bound-
aries are applied in the directions perpendicular to
L32L sides of the network. The nodes and bonds of
network represent the pore bodies and pore throats, res
tively. It is assumed that the volume is in the pore bodies
the resistance in the throats. To keep the problem as sim
as possible, we assume that all pore bodies have equal
The radiir of the throats are assigned randomly from a u
form distribution with a widthD and a meanr̄ .

Initially, the pore space is saturated with a wetting d
fender fluid, i.e., water. The invader fluid, air in the case

TABLE I. Percolation exponents ford53. The values for the
OP model are from the references@5# and @31# ~marked with †).
The IP values for the defender cluster have been obtained in
study. The exponentn is not determined explicitly in this study, bu
n50.88 is consistent with all data.

Properties OP (d53) IP (d53, defender!

q* 0.311~site!, 0.249~bond! 0.2520.26
b 0.41 0.4660.03
n 0.88 0.88
D f 2.53 2.4860.03
bB 0.99† 0.9960.03
DB 1.87† 1.8760.03
m 2.0 1.9960.04
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drying, enters the system at one of theL3L sides. At each
simulation step we identify the throats lying at the invad
defender interface~throats which connect pore bodies fille
with invader and defender fluids!. The throat with the lowest
entry pressurepc52g/r (g is the surface tension! is selected
for invasion and the corresponding pore body is emptied
fact, the decision to invade a site is made by evaluating b
properties. Such an IP model is known as a site-bond
model @29#. An additional restriction in the model is tha
isolated clusters cannot be invaded. Isolated water clus
are embedded in a vapor atmosphere with a density clos
the equilibrium vapor density. Therefore, these clust
evaporate very slowly compared to the sample-spann
cluster and most invasions will take place in this cluster@19#.
So, in fact an IP model with trapping is used. A Hoshe
Kopelman type of method is used to identify the separ
clusters@30#. A simulation run is stopped when the FP
reached, i.e., the point where the defender cluster break
in isolated clusters.

We calculate the long-time diffusivityD8 of the defender
network to get information about the transport properties
this network. Throats connecting pore bodies filled with t
defender are considered to be open for diffusion, and
local diffusion coefficient equalsD0. In order to obtainD8,
Kirchhoff’s equations are solved with a conjugated gradi
method. The backbone of the defender network is identifi
as the set of throats and bonds which carry current. T
massesM of both the defender and invader clusters are c
culated in the centralL3L3L part of the system to mini-
mize the influence of the boundaries. BothD8 and M are
calculated as averages over various realizations.

III. RESULTS

A. The structure at the fragmentation point

Simulations have been performed for system sizesL
55 –70. The throat radiir have been distributed according

a uniform distribution with an average valuer̄ 5a and a
width D50.05a. For most values ofL we have simulated
1000 realizations. ForL530, 40, 50, and 70, we have ave
aged over 792, 489, 10, and 6 realizations, respectively
Fig. 1 we have visualized a defender network at the FP:
defender sites, the spanning network and its backbone.
percolation properties and exponents obtained via th
simulations are listed in Table I.

The masses of the air~invader! cluster at BT, the liquid
~defender! cluster at the FP, and the backbone of this lat
cluster have been calculated for different system sizes.
sults are plotted in Fig. 2. The structure of the invader clus
at BT behaves as expected and its fractal dimensionD f
52.5260.03 is close to values reported in the literature
clusters at the percolation transition for both IP and OP m
els. The behavior of the defender cluster at the FP is m
interesting. On larger length scalesL.10 the cluster behave
as a cluster generated with OP. The fractal dimensionD f
52.4860.03 is somewhat lower than reported for O

is
4-3
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2.53, which may be due to the fact that the dataset used
fitting was limited to systems with 10,L<40. In systems
with sizesL<10 the mass of the defender cluster no long
follows this scaling behavior, which indicates that on sm
length scales the cluster structure deviates from the one
erated with an OP or a standard IP algorithms. With decre
ing L the massM of the cluster tends towards the mass of t

FIG. 1. The defender fluid at the fragmentation point in anL
570 system: all sites filled with defender fluid~top!, the spanning
network ~middle!, and its backbone~bottom!.

FIG. 2. The masses of: the invader~air! cluster at breakthrough
BT (n), the defender~liquid! cluster at the fragmentation point F
(h), and the backbone of this defender cluster (s). The solid lines
represent the fits through the data points.
05611
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backboneMB ~Fig. 2!, indicating that growth of branches i
suppressed on small length scales. This can be understo
follows. In a site-bond IP algorithm the widest throat~bond!
is selected to invade a pore body~site!. Therefore, the chance
that a certain site will be invaded by air increases with
creasing number of neighboring sites containing air~the in-
vader fluid!. As a consequence, sites of the defender clu
with many empty neighbors are preferentially invaded~emp-
tied! and small-scale roughness is suppressed.

The structure of the backbone is not influenced by t
subtlety of the site-bond IP algorithm and its mass nic
scales with the system size down to very small values oL.
The fractal dimensionDB[d2bB /n51.8760.03 of the
backbone is equal to the value obtained with OP~1.87! @31#.
This suggests~a! that the correlation lengthj of the defender
network behaves as in OP withn50.88 and~b! that finite-
size scaling leads to an apparentL dependence of the value
of b andD f . On large length scalesb equals the normal IP
value (b'0.41), while forL,10 b tends towards the back
bone valuebB50.9960.03 (n50.88). We have tried to ex
tract a relation betweenj and the liquid saturationS ~the
total number pore bodies filled with defender divided byL3)
by plotting S as a function ofL21/n, see Fig. 3. Note thatj
5L at the FP. Again two different regimes can be seen.
did not succeed in fitting the data with one single equat
for all values ofL due to the abrupt change in the slop
aroundL510. The data forL<10 can be fitted reasonabl
well with a relationS}L21/n. Due to a lack of data points fo
large L, it is hard to come up with an accurate relation f
systems withL.10. This part of the curve has been fitte
with a parabolic equation, in order to estimate the perco
tion threshold. By fitting the data we obtain the followin
expression for the correlation lengthj:

j5H AuS2S†u2n, j<10

uAC21F~S2S* !2Cu2n j.10,
~7!

where S†50.179, A51.57, S* 50.255, C50.047, andF

FIG. 3. The liquid saturationS ~fraction of sites occupied by the
defender fluid! at the fragmentation point FP. In an infinite syste
L5` the defender network breaks up in isolated clusters aS
5S* .
4-4
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50.271. The quantityS* is the real percolation threshol
and its value is close to that of bond OP, see Table I. It ha
be remarked that for a more precise determination of bothS*
and of the dependence ofj on S for j.10, simulations with
larger systems are needed. The actual value ofS* will be in
between 0.25 and 0.26. We also expect that such larger
culations will show that a relationS}L21/n holds for largeL
@24#. That a parabolic equation is needed for an accurat
could be a crossover effect; this would also explain
somewhat low value obtained for the fractal dimension of
defender networkD f52.48 see Table I. The existence of th
two regimes is in agreement with the idea that the struc
of the defender cluster is different on small and large len
scales. The fact thatS}L21/n for L<10 seems to confirm the
idea that the correlation length of the defender network
haves as in OP, with the expected valuen50.88.

B. Transport properties at the fragmentation point

As a next step we have calculated the diffusivityD8 of
ions in the defender phase at the fragmentation point FP
Fig. 4 we have plottedD8 as a function of the system sizeL.
The diffusion coefficient shows nice scaling behavior for
values ofL. This is in agreement with the behavior of th
backbone, of which the mass could also be fitted with
single power law, see Fig. 2. By fitting the data with Eq.~6!
we obtainm/n52.2660.04 andm51.9960.04 (n50.88),
which is close to the values obtained with OP~Table I!. This
confirms our ideas regarding the structure of the backbon
the defender cluster: although the defender cluster itself
viates from OP behavior, this deviation is due to t
branches. The backbone behaves as in OP and so doe
diffusion coefficientD8 because it is a property of the bac
bone of the cluster.

While D8 behaves as in OP, diffusion processes on
clusters and on site-bond IP clusters nevertheless differ
two reasons. First, the diffusion coefficient calculated as
average over all particles,D, equalsD8/P @see Eq.~4!# and
therefore depends on the structure of the whole defender
work. In the previous section we have shown that the str

FIG. 4. The diffusion coefficientD8 on the spanning cluster a
the fragmentation point FP for different system sizesL.
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ture of this network is different on small and large leng
scales. Second, we expect that particles will move fa
through a network generated with the site-bond IP mo
than through an OP network. Due to the fact that sm
branches are suppressed, there will be fewer dead-end
for the diffusing particles. This will be reflected in th
random-walk dimensiondw .

For a few systems (L510, 20, and 70! we have generated
random walks and calculated the average squared disp
ment ^R2& of diffusing particles on the percolating defend
cluster, see Fig. 5. ForA^R2&!L all systems behave th
same and anomalous diffusion is found,dw.2. Figure 5
indicates thatdw increases witĥR2&, which is in agreement
with the fact that on small length scales the formation
branches is suppressed and the structure of a cluster is
backbonelike. For OP clusters it is known that the rando
walk dimension of a cluster (dw53.88 @28#! is larger than
that of its backbone (dwB53.09 @31#!. In Fig. 5 the solid
lines represent the diffusion behavior on an OP cluster
on the backbone of such a cluster. This confirms the idea
particles diffuse faster on defender clusters generated
site-bond IP rules than on OP clusters because there
fewer traps for the diffusing particles due to the absence
branches on small length scales.

C. Away from the fragmentation point

In the previous sections we have investigated the str
tural and transport properties of the defender network at
FP. According to the theory discussed in Sec. II C, the str
ture and the transport properties of networks at or away fr
the FP obey simple scaling laws on length scales below
correlation lengthj. In this section we discuss simulatio
results for the network properties of the defender cluster a
function of the degree of saturationS, in order to see whethe
or not this is true for the site-bond IP model. In Fig. 6 w
have plotted the structural properties of the defender ph
~the masses of the network and its backbone! and the diffu-

FIG. 5. The behavior of diffusing particles on the spanning d
fender cluster at the fragmentation point for different system siz
L510 (s), 20 (D), and 70 (h). The lines represent systems wit
random-walk dimensions of an OP cluster,dw53.88 @28#, and its
backbonedwB53.09 @31#.
4-5
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HUININK, PEL, AND MICHELS PHYSICAL REVIEW E 68, 056114 ~2003!
sion coefficientD8 in a system of sizeL570 as a function of
the defender saturationS. The behavior of the network is a
expected. Close to the FP the strength of the network an
its backbone rapidly drop to zero whenS↓S* . Therefore
D8→0 when the system approaches the FP. Close toS51
D8 rapidly decreases from 1 to 0.8 with decreasingS. This is
due to the fact that the invader~air! enters the system from
one side. In the beginning of the invasion process most
vasions occur close to the entrance, which creates a relat
‘‘dry’’ surface layer with a high resistance against diffusio

Results obtained for one single system, as shown in
6, are instructive, but of little value for a more quantitati
analysis because finite-size effects make it difficult to o
serve power-law relations like Eqs.~2! and ~4!. Therefore,
percolation exponents are generally determined at the pe
lation threshold by finite-size scaling as we did in the pre
ous sections. Testing whether or not the outcomes also
away from the FP (S.S* ) can again be done with the he
of finite-size scaling. Consider a propertyY which behaves in
an infinite system as

Y}j2l/n, ~8!

where l is a scaling exponent. In a system of sizeL the
following relation holds forY @32#:

Y5L2l/n f „~L/j!1/n
…, ~9!

where f (x) is a scaling function withx[(L/j)1/n: f (x)
5const3xl for x@1 and f (x)51 for x!1. In our particu-
lar case the use of Eq.~9! is complicated by the fact thatj
cannot be described with one single power law for all valu
of S, see Fig. 3 and Eq.~7!.

First, we want to analyze the strength of the backbo
PB5MB /Ld. By using Y5PB , l5bB , and relation~9! it
can be shown that the scaling function is equal toMBL2DB.
In Fig. 7 we plottedMBL2DB as a function ofx5(L/j)1/n.
In the case that 1<j<10, Fig. 7~a!, most of the data points
collapse on a master curve, the solid line, which is given
the relationf (x)5CxbB. Deviations of this master curve ar
observed for all system sizes whenL/j approachesL. When
the saturation increases, the correlation length decreases
correlation length saturates at its minimal value,j51, which
is the distance between two neighboring sites. Whenj
.10, Fig. 7~b!, the data points again collapse on a sing
curve, close to the previously obtained master curvef (x)

FIG. 6. ~a! The masses of the defender network and of its ba
bone and~b! diffusion coefficient on the former network as a fun
tion of the fraction of pores filled by defender fluidS.
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5CxbB. It seems that the data points are now located sligh
below the functionf (x). Deviations are observed for low
values ofL/j, whereS is close toS* . WhenS approaches
S* , the correlation length diverges until it saturates at
maximal valuej5L. That in both cases the data points ob
a relationship of the formxbB, confirms that we have found
the correct values forDB andbB .

By usingY5D8, l5m, and relation~9! it can be shown
that the scaling function for diffusivity is equal toD8Lm/n. In
Fig. 8 we have plottedD8Lm/n as a function of x
5(L/j)1/n. In the case that 1<j<10, Fig. 8a, the data point
follow a master curve, which is represented by a solid l
and obeys the relationg(x)5Kxm. For the various system
deviations are observed both for high and low values ofL/j.
Again the deviations for high values ofL/j result from a
saturation of the correlation length at its minimal value,j
51. The deviations at lowL/j values seem to be relate

-

FIG. 7. Finite-size scaling of the backbone mass of the defen
cluster; MBLDB is equal to the scaling functionf (x), where x
5(L/j)1/n. The symbols refer to various system sizes:L510 (h),
20 (s), 30 (D), 50 (L), 70 (3). Two expressions forj has been
used, Eq.~7!: ~a! the one forj<10 and~b! the one forj.10. The
solid lines represent a functionf (x)5CxbB.

FIG. 8. Finite-size scaling of the diffusion constant of the d
fender cluster;D8Lm/n is equal to the scaling functiong(x), where
x5(L/j)1/n. The symbols refer to various system sizes:L510
(h), 20 (s), 30 (D), 50 (L), and 70 (3). Two expressions for
j has been used, Eq.~7!: ~a! the one forj<10 and~b! the one for
j.10. The solid lines represent a functiong(x)5Kxm.
4-6
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with the behavior atj.10. In Fig. 8~b! we have plotted the
data forj.10 together with the previously obtained relatio
g(x)5Kxm ~the solid line!. Also here most of the data point
collapse on a single curve. The observed deviations at
values ofL/j are due to the fact that the correlation leng
saturates at its maximal value,j5L . An interesting feature
of Fig. 8~b! is that the master curve follows a scaling-lawxm,
but is shifted significantly below the functiong(x)5Kxm.
Until now we do not have a clear explanation for this featu
It might be that our expression forj, Eq. ~7!, is not accurate
enough. However, the fact that in both cases the data po
obey a relationship of the formxm, seems to confirm that we
have indeed found the correct value for the conduction
ponentm.

IV. CONCLUSIONS

We have studied the structure and the transport prope
of a drying water network by using a site-bond invasi
percolation IP model, in which the invader and defender r
resent air and water, respectively. The outcomes of the si
lations have been compared with well-known results of O

The site-bond IP simulations predict that the backbone
a defender network and its transport properties are the s
as in OP. The strength exponent of the backbonebB50.99
d
d-
.,

r.

J

s

nd

Le

C

05611
w

.

ts

-
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-
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.
f

me

60.03, the correlation length exponentn50.88, and the
conductivity exponentm51.9960.04 are almost the same a
in OP. However, the behavior of the total network devia
from that of networks generated with OP. On short leng
scales~when the correlation lengthj<10) the formation of
branches is suppressed in the site-bond IP model, due to
fact that pores with many empty neighbors are preferenti
invaded. On larger length scales branches are not suppre
and the network behaves in OP,b50.41. The differences
between our IP results and the outcomes of OP are a co
quence of the invasion mechanism used in the IP model: s
~pores! are invaded by evaluation of values~radii! assigned
to the bonds~throats!.

We have found that the mobility of ions on a netwo
generated with the site-bond IP model is higher than t
from an OP model. Due to the fact that the defender netw
lacks small branches, there are fewer traps for diffusing p
ticles. This makes clear that the details of the invasion p
cess are important for understanding the transport prope
in a drying network.
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